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Presence of Energy Flux in Quantum Spin Chains:
An Experimental Signature

Z. Ra� cz1
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Using the XXZ model for the description of one-dimensional magnetic materials
we show that an energy flux, jE , produces a shift, $kt- jE , in the characteristic
wavenumber of the spin-spin correlations. We estimate $k for a realistic
experimental setup and find that it is measurable in inelastic neutron scattering
experiments.
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1. INTRODUCTION

The problem of thermal transport in one-dimensional systems has been
much investigated, the main goal being to derive Fourier's heat law.
Analytical and numerical studies of a number of classical lattice-dynamical
models indicate that the condition for Fourier's law to hold is the presence
of strong nonlinearities i.e., nonintegrability (chaoticity) of the dynamics.(1)

Although quantum systems have been less studied, it appears that similar
considerations apply to quantum spin chains as well.(2)

Integrable systems, on the other hand, show anomalous thermal trans-
port. No internal thermal gradient is formed in a harmonic crystal(3) or in
a transverse Ising chain(2) and, as a consequence, the energy (heat) flux is
not proportional to the temperature gradient inside the sample. The origin
of this anomaly may be the fact that the energy current in integrable
systems often emerges as an integral of motion which automatically yields
anomalous thermal transport coefficients.(4)

The flat temperature profile in the presence of energy current is an
intriguing feature of integrable systems. In effect, it points to the existence
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of a homogeneous state carrying finite energy current. In this paper, we
shall explore the experimentally measurable properties of such a state by
studying the XXZ spin chain in the presence of an energy current. The
most spectacular feature of such a state is the incommensurability of
magnetic excitations. Namely, in the presense of energy flow jE , the charac-
teristic wave vector is shifted from its antiferromagnetic value ? by the
amount $kt- jE . Since there are quite a few well established realizations
of quasi-one-dimensional Heisenberg chains(5) (e.g., KCuF3 , (6) Cs2COCl4 , (7)

Copper Benzoate, (8) Sr2CuO3 , Cs2CuCl4
(9)), we believe that the predicted

changes in the dynamical correlation functions bear direct experimental
relevance.

The basic problem of constructing a state which carries an energy
current is the nonequilibrium nature of that state. Even if we assume that
the flat temperature profile means the existence of equilibrium, we still face
a problem that the value of the established temperature is not known.(10)

We shall avoid this problem by restricting our calculation to zero tem-
perature (T=0) and assuming that the ground state correlations are
robust enough to survive at low temperatures.

The construction of a homogeneous state with energy current at T=0
can be done by adding the energy current with a Lagrange multiplier to the
XXZ Hamiltonian and then finding the ground state. Similar calculations
have been carried out already for the transverse Ising and XX chains(11, 12)

and, in a different context, for the XXZ model.(13, 14) The new result we
report is the calculation of an experimentally accessible parameter, namely
the shift, $k, of the characteristic wavenumber in the spin-spin correlations
as a function of the energy current, jE .

Once we have $k( jE), we turn to a realistic experimental setup and
estimate jE flowing through a single spin chain which gives an estimate of
$k. Our result shows that $k is in the accessible range of an inelastic
neutron scattering experiment.

2. THE MODEL AND THE CHARACTERISTIC WAVE NUMBER

The model we study is the spin-1�2 XXZ chain defined by the
Hamiltonian

H� XXZ=J :
l

[_x
l _x

l+1+_ y
l _ y

l+1+2_z
l_z

l+1] (1)

where the spins _:
l (:=x, y, z) are Pauli spin matrices at sites l=1, 2,..., N

of a one-dimensional periodic chain (_:
N+1=s:

1). We shall use the param-
etrization 2=cos # and consider only the ``antiferromagnetic'' region
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0<#<?�2. In order to impose a fixed energy current jE in the ground
state, we add the current operator to the Hamiltonian with a Lagrange
multiplier

H� =H� XXZ+*}̂E (2)

where

}̂E=
J2

�
:
l

_z
l[_ y

l&1 _x
l+1&_x

l&1 _ y
l+1

+2(_x
l&2_ y

l&1&_ y
l&2_x

l&1+_x
l+1_ y

l+2&_ y
l+1_x

l+2)] (3)

Importantly, }̂E is an integral of motion, [ }̂E , H� ]=0, thus indicating that
(i) the transport of energy is singular in this system(4) and (ii) the states
carrying fixed energy current can be obtained as stationary states of H� XXZ .

The XXZ model can be described in terms of interacting fermions and
has been solved using the Bethe Ansatz method. The same approach works
in the presence of the driving term, *}̂E , as well, and the solution has been
given in refs. 13 and 14. An interesting feature of the solution is that the
system displays rigidity against the drive, namely the ground state supports
a nonzero energy current, ( }̂E) #jE{0, only if the coupling * exceeds
some critical value *c(#). As we are interested in fixed energy currents, we
simply choose sufficiently large values of *. Furthermore, since in realistic
situations jE turns out to be small, we concentrate on the region *r*c(#),
in which case jE B(*&*c).

Once the energy current flows, an important restructuring takes place
in the ground state. The single Fermi sea characterizing the ground state
without current splits into two Fermi seas as shown in Fig. 1 for the simple
case of the XX limit (2=0) where a free-fermion description applies. There
are now four Fermi wave vectors, \?�2 and ?�2\$k, and the structure of
the ground state immediately implies that there will be gapless excitations
at wave vectors 0, $k, 2$k, ?&$k, ? and ?+$k, which is readily confirmed
by the exact solution at arbitrary 2.

Thus an incommensurability characterized by $k appears in the
system. This can be seen readily in the ground-state correlations. Indeed, it
has been shown(12, 15) that, in the XX limit, the longitudinal correlations for
small jE{0 can be expressed in a scaling form

(_x
l _x

l+n) jE{0

(_x
l _x

l+n) jE=0

=8($kn) (4)
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Fig. 1. Single-particle fermionic spectrum in the XX limit (2=0) of the H� XXZ+*}̂E

hamiltonian with and without energy current in the ground state (dashed line, *=1.3 and
solid line, *=0, respectively). The energy is measured in units of J while the wave number,
k, is given in units of the inverse lattice spacing. The Fermi energy is zero independently of *.

where 8(x � 0)=1 and the large argument asymptotics of the scaling func-
tion is given by

lim
x � �

8(x)t
1

- x
(1+cos x) (5)

Since (_x
l _x

l+n) jE=0t(&1)n�- n Eqs. (4), (5) imply that, as the current is
switched on, the static structure factor develops additional peaks at
k=?\$k (as it will turn out, $k is small thus it is better to speak about
the k=? peak developing shoulders for jE{0).

In order to connect $k to the current one determines both jE and $k
through * and then eliminates the Lagrange multiplier. The expressions are
simple for the XX limit(12)

jE=
J2

2?� \1&
1
*2+ , cos $k=*&1 (6)

and, for small currents (*�*c=1), they yield

$k=� jE

j (1)
E

(7)

where a ``natural unit'' of the current, j (1)
E =J2�h, has been introduced.
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The above calculation can be carried out for any 0�2<1 and the
result for $k differs only in a prefactor of order unity(16)

$k=
2#

? sin # �
jE

j (1)
E

(8)

As one can see, the largest $k is obtained in the XX limit (# � ?�2).
In principle, if $k is large enough then the extra peaks at ?\$k should

be observable as Bragg peaks in an elastic neutron scattering experiment.
In practice, however, the incommensurate modulations of distinct spin
chains are not correlated and, as a consequence, the delta function of the
Bragg peak would spread out into a plain and the effect would be unobser-
vable.

3. STRUCTURE FACTOR AND AN EXPERIMENTAL SETUP

It is more promising to look for an experimental signature in an
inelastic neutron scattering experiment where the excitations of the system
are measured and no coherence among the chains is needed. Taking into
account the facts that, for jE=0, most of the spectral weight is concen-
trated on the region around the antiferromagnetic wave vector ?, and
furthermore that, for jE{0, there are gapless excitations at wave vectors
?\$k, we expect that the presence of the current manisfests itself via the
emergence of additional inelastic peaks at wave vector ?\$k. This expecta-
tion can be put on a more solid base by calculating the dynamic structure
factor and examining the relative weights at wave vectors ? and ?\$k.

The simplest case is again the XX limit where the calculation of the
time-dependent transverse correlation function, (_z

n(t) _z
0(0)) , is straight-

forward. There is, however, a principal problem at the outset of the calcula-
tion. Namely, it is not clear whether the time-evolution of _z

n(t) is governed
by H� XX or by H� XX&*}̂E. We shall take the view that in reality the current-
carrying state is formed as a result of boundary conditions. Thus the local
perturbation caused by an incoming neutron evolves by the local
hamiltonian i.e., by H� XX .(17) Once (_z

n(t) _z
0(0)) is known its Fourier

transform in time and space gives the structure factor Szz(k, |) as shown
in Fig. 2.

As we can see, a large part of the weight of the jE=0 peak of the
structure factor at ? shifts to ?\$k for jE{0. Thus one can expect that
even if $k is small, the presence of a small energy current will result in a
broadening by 2$k of the inelastic peak centered at wavevector ?. It is this
broadening that we propose as an experimental signature for the current-
carrying state. The remaining question now is how to estimate $k.
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Fig. 2. The structure factors Szz(k, |) displayed on the wavenumber-frequency (k&|) plane
for cases of (a) *=1.00 (no flux) and (b) *=1.01. The unit of | is J�� while k is measured
in units of the inverse lattice spacing. The darkness of the shading is proportional to Szz(k, |).

As we can see from (8), an estimate of $k requires the value of the
energy current, jE . Thus we should, in principle, calculate jE in a spin chain
where the two ends are kept at different temperatures. We are unable to do
this for any reasonable size system, and so we shall treat the energy flux as
a parameter taken from experiments ( jE#j exp

E ). Then a thermodynamic
measurement of j exp

E can be used to estimate the value of $k in an indepen-
dent neutron-scattering experiment. Below we shall show how to estimate
j exp

E using parameters from a realistic experimental setup.
Let the sample be a cube of side l=10&2 m and let the spin chains be

along x direction with the distance between the neighboring chains being
d=10&9 m. Furthermore, let the sides of the cube perpendicular to the
chains be at temperatures T and T+$T (see Fig. 3). The temperature
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should be chosen to be low in order to minimize the phonon contribution
to j exp

E . However, T cannot be too small since then the small coupling
between the chains makes the system three-dimensional. The value of $T
should be, in principle, chosen large but the limitations of cryogenics of a
realistic setup restrict the steady-state temperature-differences to $T�0.1T.
From the above considerations we arrive at the following ranges for the
possible temperatures and temperature-differences

T=(1&10)%K; $T=0.1T=(0.1&1)%K (9)

The total current of heat across the sample can now be estimated as

j total
E =}l 2 $T

l
(10)

provided we know the heat conductivity, }. We note here that the finiteness
of the experimental } is not in contradiction with the singular nature
(}int=�) of the heat conductivity of integrable spin chains. A macroscopic
sample consist of spin chains of characteristic length lr10&4 cm and the
energy must also be transported between chains. This leads to the loss of
ideal conductivity and results in a finite }. Consequently, the estimate of
energy flux using the experimental } does give an estimate of the energy
flux through the chains provided the spin chains are the main channels of
energy transport.

Fig. 3. Experimental setup for measuring the effect of energy flux. The solid lines represent
the spin chains in a cubic sample of volume l 3 with d being the distance between the chains.
The energy flux is generated by keeping the two ends of the chains at temperatures T and
T+$T, respectively.
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Unfortunately, }, is not available for the materials we have in
mind, (6�9) and another problematic issue is how much of the conductivity
comes from the spin-chains. Since measurements of the magnetothermal
conductivity of magnetic materials(18, 19) indicate that spin waves provide a
significant fraction of the low-temperature thermal conductivity, we shall
assume that an order of magnitude estimate of the energy current through
the spin chains is given by j total

E . Furthermore, we shall assume that, as a
value of }, we can take a characteristic value of this parameter in crys-
talline magnetic materials in the temperature range T=(1&10)%K:(20)

}r(1&10) }
W

m } %K
(11)

We can then estimate j total
E r(10&3&10&1) W and, since the number of

spin-chains in the sample is N=l 2�d 2=(10&2�10&9)2=1014, we obtain
the energy flux per chain, j exp

E , as

j exp
E r

j total
E

N
=(10&17&10&15) W (12)

As we have seen (7) the natural unit of energy current in a spin chain is
j (1)

E =J2�h. Using a characteristic value of J=(1&10)%K for the spin
coupling we find j (1)

E r(10&12&10&10) W and obtain the following
estimate for the shift of the wavenumber

$kt� j exp
E

j (1)
E

t10&4&10&2 (13)

This is our central result. Since $kt10&2 is accessible in an inelastic
neutron scattering experiment, the effect of shift in the wavenumber should
be observable.

In summary, we have studied an integrable system which doesn't obey
Fourier's law. We proposed that, under some simplifying assumptions, one
can explore states of this system which carry current of energy and, further-
more, one can derive theoretical results verifiable in experiments.
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